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Abstract

We characterize the set of functions which can be approximated by continuous functions in
the L® norm with respect to almost every weight. This allows to characterize the set of
functions which can be approximated by polynomials or by smooth functions for a wide range
of weights.
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1. Introduction

If I is any compact interval, Weierstrass” Theorem says that C(I) is the largest set
of functions which can be approximated by polynomials in the norm L* (1), if we
identify, as usual, functions which are equal almost everywhere. There are many
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generalizations of this theorem (see e.g. the monographs [L,P], and the references
therein).

Our goal is to study the polynomial approximation of functions with the norm
L* (w) defined by

171

where w is a weight, i.e. a non-negative measurable function, and we follow the
convention 0 - oo = 0. Notice that (1.1) is not the usual definition of the L* norm in
the context of measure theory, although it is the correct one when working with
weights (see e.g. [BO,DMS)).

One of the authors studied this problem in [R1], in the case of bounded weights. In
the current paper we obtain several improvements of the results in [R1], and besides
we manage with general unbounded weights. If w is not bounded, then the
polynomials are not in L* (w), in general. Therefore, it is natural to bear in mind the
problem of approximation by functions in C(R) or C*(R). An important tool which
allows to improve the results in [R1] is a lemma (see Lemma 2.4 in Section 2) which
deals with the regularity of functions near the “worst” points of w (in this lemma we
study all bad points simultaneously). Another key idea is using covering lemmas
similar to the ones in harmonic analysis (see Section 3).

Now, let us state the main result. It characterizes the functions which can be
approximated by continuous functions, smooth functions or polynomials. Our
hypothesis about the weight is not restrictive at all: although we have tried, we have
not been able to construct any weight which does not fulfill such condition. We refer
to the definitions in the next section.

Lo (w) = €sssup|f(x)|w(x), (1.1)

Theorem 1.1. Let w be an admissible weight and
Hy ={feL®(w):f is continuous to the right at every point of R,
f is continuous to the left at every point of R™,
for each aeS+,e§il(§£11 |f(x) —f(a)] w(x) =0,
for each aeS™, eis_'lign |f(x) = f(a)| w(x) = 0}.
Then:

(@) The closure of C(R)nL*(w) in L*(w) is Hy.
(b) If weLZ.(R), then the closure of C* (R)NL* (w) in L* (w) is also Hy.
(c) If'supp w is compact and we L™ (R), then the closure of the space of polynomials is

Hy as well.
(d) If feHyn L' (supp w), S; ST US; US; is countable and |S| = 0, then [ can be
approximated by functions in C(R) with the norm || - || 1« ) + 1| * || 21 supp w) -

If w is not bounded, we can also characterize the completion of smooth functions
and polynomials.
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Theorem 1.2. Let us consider a weight w with compact support. If p,, =0, then the
closure of the space of polynomials in L™ (w) is {0}. If p,, is not identically 0, the
closure of the space of polynomials in L™ (w) is the set of functions f such that f /p,, is
in the closure of the space of polynomials in L™ (|p,,|w).

The weight |p,|w is bounded (since p,€L*(w)) and has compact support;
therefore, if |p,,|w is admissible, then by Theorem 1.1 we know which is the closure of
the space of polynomials in L* (|p,|w).

Theorem 1.3. Let us consider a weight w such that there exists a minimal function f,,
for w. Then the closure of C* (R) in L™ (w) is the set of functions [ such that f'/f,, is in
the closure of C* (R) in L™ (] f,,|w).

The weight |f,|w is locally bounded (since f,, €L (w)); therefore, if |f,|w is

admissible, then by Theorem 1.1 we know which is the closure of C*(R) in

L= (] fulw).

The simultaneous approximation with the norm || - ||z, + I - |1 is an

(supp w)
important tool to deal with the problem of approximation in weighted Sobolev
spaces W""’O(WO7 Wi, ..., wi). Consequently, Theorem 1.1 is key to characterize the
functions which can be approximated by smooth functions or polynomials, in
Wk (wo, wi, ..., wi) (see [PQRT1,PQRT2)).

The analogue of Weierstrass” Theorem with the norms W% (uy, iy, ..., ;) (with
I<p< o) can be found in [RARPI,RARP2,R3]; Alvarez et al. [APRR] and
Rodriguez and Yakubovich [RY] deal with the case of curves in the complex plane
instead of intervals. The results for p = 2 have important consequences in the study
of Sobolev orthogonal polynomials (see [LP,LPP,R2]).

2. Approximation in L* (w)
Let us start with some definitions.

Definition 2.1. A weight w is a measurable function w: R—[0, co]. If w is only
defined in A <R, we set w := 0 in R\A4.

Definition 2.2. Given a measurable set AR and a weight w, we define the space
L>* (A, w) as the space of equivalence classes of measurable functions /' : 4 —R with
respect to the norm

Sz a0y = esssup [ f(x)[w(x).
xed

The main results in this paper can be applied to functions f with complex values,
splitting f into its real and imaginary parts. From now on, if we do not specify the
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set A, we are assuming that 4 = R; analogously, if we do not make explicit the
weight w, we are assuming that w = 1.

Let 4 be a measurable subset of R; we always consider the space L'(4) with
respect to the restriction of the Lebesgue measure on A.

Definition 2.3. Given a measurable set A4, we define the essential closure of A, as
the set

esscl4 = {xeR: |[An(x—J,x+)|>0, Vo6>0},

where |E| denotes the Lebesgue measure of the set E.

Definition 2.4. If A4 is a measurable set, f is a function defined on 4 with real values
and aeesscl 4, we say that esslimye 4, v—qf (x) = [€Rif for every ¢>0 there exists
0>0 such that | f(x) — /| <e for almost every xe An(a — d,a + 0). In a similar way
we can define esslimye 4 v—qf(x) = 0 and esslimye 4 y—qf(x) = —00. We define
the essential superior limit and the essential inferior limit in A as follows:

esslimsupf(x) = inf  esssup  f(x),
XeA, x—a >0 xedn(a—d,a+5)

essliminf f(x) :=sup  essinf  f(x).

xed, x—a 5>0 XeAn(a—d,a+o)

If we do not specify the set 4, we are assuming that 4 = R.

Remarks. (1) The essential superior (or inferior) limit of a function f does not
change if we modify f on a set of zero Lebesgue measure.
(2) It is well known that

ess lim sup f(x) = ess liminf f(x),
xed, x—a X€A, x—a

esslim f(x) =1/ if and only if esslimsup f(x) =essliminf f(x) = /.
xed,x—a xed, x—a xX€eA, x—a
(3) We impose the condition aeess cl 4 in order to have the unicity of the essential
limit. If a¢esscl A, then every real number is an essential limit for any function f.

Definition 2.5. Given a weight w, the support of w, denoted by suppw, is the
complement of the greatest open set GeR with w =0 a.e. on G.

It is clear that suppw =esscl{xeR: w(x)>0}. It is also clear that L*(w) =
L*(suppw,w). Since obviously esscl(esscl4) =esscld4 and suppw =
esscl{xeR : w(x)>0}, it follows that supp w = esscl(supp w). This fact allows to
state the following definition.
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Definition 2.6. Given a weight w we say that aesuppw is a singularity of w (or
singular for w) if

ess liminf w(x) =0.
XESupp w, x>a

We say that a singularity a of w is of zype 1 if esslim,_,, w(x) = 0.

We say that a singularity a of w is of fype 2 if 0<ess lim sup,._,,, w(x) < 0.

We say that a singularity @ of w is of type 3 if esslimsup,_,, w(x) = oo.

We denote by S and S; (i = 1,2, 3), respectively, the set of singularities of w and
the set of singularities of w of type i.

® Wesay that ae S, (respectively ae S; ) if a verifies the property in the definition of
S; when we take the limit as x—at (respectively x—a~). We define S* =
SFuSTuUST and S~ =Sy uUS; US;.

Remark. The sets S and S5 are closed subsets of supp w.

The current definition of singular point is much more restrictive than the one in
[R1]. Consequently, the set of singular points is smaller than in [R1] (recall that
S<csupp w; this does not hold with the definition in [R1]): if we consider, for
example, a Cantor set C<|0, 1] of positive length and take w as the characteristic
function of C, we have S = (); however, with the definition of [R1], the set of singular

points would be R. This fact is crucial, since singular points make our work more
difficult.

Definition 2.7. Given a weight w, we define the right regular and left regular points of
w, respectively, as

RY = {aesuppw: essliminf w(x)>0},
xXesupp w, x»>at

R™ :={aesuppw: essliminf w(x)>0}.

XESupp w, x—>a-

Remark. Notice that RT US| UST UST =suppw =R US; US; US;.

Definition 2.8. Given a weight w and ¢>0, we define 4, = {xesupp w: w(x)>=¢}
and A{ = supp w\4,.

We collect here some useful technical results which were proved in [R1].
Lemma A (Rodriguez [R1, Lemma 2.4]). If A is a measurable set, we have:

(1) esscl A is a closed set contained in A.
(2) |A\esscl 4| = 0.
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(3) If f is a measurable function in Auesscl A, acesscl A and there exists
ess liMyeess of 4, xoaf(X), then there exists esslimye 4, v o f(X) and

esslim f(x)= esslim f(x).
X€A, x—a xeesscl 4, x—a

(4) If |A|>0 and f is a continuous function in R we have

1l = _sup /()]

xeess cl

Lemma B (Rodriguez [R1, Lemma 2.2]). Let us consider a weight w and a€ S,. Then,
every function f in the closure of C(R)L* (w) with the norm L™ (w) verifies

esslim  f(x)w(x) =0.

XESUpp w, x—>a

Remark. A similar result is true if ae S| or ae Sy

Lemma C (Rodriguez [R1, Lemma 2.6]). Let us consider a weight w and a€ S. Then,
every function f in the closure of C(R)L* (w) with the norm L™ (w) verifies

¢>0 XeAS, x—a

inf (ess lim sup | f(x)] w(x)) =0.

Lemma D (Rodriguez [R1, Lemma 2.7]). Let us consider a weight w and a€ S;. If

e>0

inf (ess lim sup | f(x) w(x)) =0,
xedS, x—a

then we have ess limycgupp wx—af (x) w(x) = 0.

Remark. A similar result is true if ae S| or ae Sy.

Lemmas B-D were proved in [R1] with x in some interval, instead of xesupp w.
However the same proof is still valid.
Next, let us prove some technical lemmas.

Lemma 2.1. Let us consider a weight w and aesupp w. If esslimsup,cqop . x—q
w(x) = [€(0, o], then for every function f in the closure of C(R)NL™(w) with the
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norm L® (w), we have that

sslim f(x) =f(a), for every 0<e<l.

€
X€EA, x—a

Furthermore f € (., C(esscl A,); in particular, [ is continuous to the right at each
point of R and continuous to the left at each point of R™.

Remark. Notice that the functions in L* (w) are defined in supp w; therefore, the
continuity is referred to this set. Recall that we identify functions which are equal
almost everywhere.

Proof. We have for every 6 >0

ess sup w(x)=1>0,
xesupp w N (a—d,a+d)

and then
[{xesuppwn(a—3d,a+9d): w(x)=e}|>0,

for every 0 >0 and 0 <e</. This implies that a belongs to esscl 4,, for every 0 <e</.
If ge C(R)n L™ (w), 0<e<! and >0, we have

ellgl| (A, A a—5,a+3]) S g1l (4, [a—5,a+0),w)*
Since esscl(4,N[a — d,a + J]) is a compact set and ge C(R), Lemma A(4) gives

;- ¢ < . o

¢ xeess Cl(zﬁ?{i’ﬁl—é,a+5]) |g(x>| ||g||L (4enla=d,a+0]w)
Consequently, if {g,} = C(R) n L* (w) converges to f in L* (w), then {g, } converges
to f uniformly in esscl(4d.n[a —d,a+d]) and feC(esscl(4d.n[a — J,a+ J])) for
every 0> 0. Therefore '€ C(ess cl 4;) for every ¢>0. This fact and Lemma A(3) give
that, for 0 <e</, there exists

esslim f(x)= esslim f(x)= lim f(x)=f(a).

X€EA,, x—>a xeesscl 4;, x—>a xeesscl 4;, x—>a
If yeR", then there exists ¢6>0 with essinf cqppw (s W(X)=e, and
consequently suppwn[y,y + d]<esscl 4;. This fact and f e C(esscl 4;) give that f
is continuous to the right at y. If ye R™, a similar argument allows us to conclude
that f is continuous to the left at y.

Definition 2.9. We say that a function g preserves the continuity of f if g is continuous
to the right at every point in which f is continuous to the right, and g is continuous
to the left at every point in which f is continuous to the left.

It is obvious that if g preserves the continuity of f, then g is continuous at every
point in which f is continuous.
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Lemma 2.2. Let us consider a weight w. Assume that a€ S| and a€(a, o0)\S. Then,
for any fixed n>0 and f'e€ C(supp w\S) " L* (w) with

inf <ess lim sup | f(x)| W(x)> =0,

e>0\ xede, x—at

there exist be(a,a+ 1)\S and a function ge L* (w)nC(la,b]), preserving the
continuity of f, such that g=f in suppw\a,b), |[f —gllp-q,<n (and ||f -
g||L1(supp w) <M if fe L' (supp w)). Furthermore, if f is not continuous to the left at a,

g can be chosen with the additional condition g(a) = 0 or even g(a) = A for any fixed
LeR.

Remark. A similar result is true if ae Sy and ae(—0,a)\S.

Proof. Since ae(a, 0)\S and (a, c0)\S is an open set, there exist intervals

Ly (a,a+1/n)\S, for each n. We assume first that we can choose
[V}, yu] =supp w, for every n. Choosing y, smaller if it is necessary, we can assume
that there exist &, >0 with [y}, y, + &) =supp wn ((a,a + 1/n)\S), for every n; this
fact and the last statement of Lemma 2.1 give that e C([y}, v, + &]).

Let us assume that f(y,)>0. Consider the convex hull C of the set
{(x,y)eR* xe[y},y,] and y=f(x)}. Since feC([y},ya]), we have that dC\({x =
yLy>fODYu{x = yu,y>f(ya)}) is the graph of a convex function H,e C([y},y.])
with H,(y!) = f(»}) and H,(y,) = f(yx). Then, we can find a function h,e C([a, y,])
with |h,|<|f | and sgnh, = sgnf if h,#0 in [y}, v,], h(ya) =f(yn) and h, =0 in
[a, y}): If H,(#) = 0 for some te [y}, y,), we can choose &, = 0 in [a, ] and h, = H, in
(£, yu); if Hy>01in [pl, ya], we can choose h, = 0 in [a,s] (with s€ [y} y,)), h, = H, in
[t,yn] (With te(s,y,)), and Ay, a straight line in [s, 7].

If £ (y,) <0, we can construct /, in a similar way. If f(y,) = 0, we can take A, = 0.

If we cannot find [p!,y,]=suppw, for every n, then there exist intervals
(Y, zn) =(a,a+ 1/n)\supp w, for each n, since (a,a+ 1/n)\suppw is an open set.
Furthermore, we can choose y, € supp w for every n, since ae S| . We define /, = 0 in

[Cl, yn] ‘
Let us define now the function f, as

ha(x) if xela, y),

Su(x) = {f(x) if xesupp w\[a, yn].

Let us remark that f, is continuous in [a, y,] and preserves the continuity of /', except
perhaps at x = a.
Notice that | f,|<|f | and sgnf, = sgnf if f,#0, in [a, y,] " supp w. Hence

S = Fall oy = 1 = Fall e o) S PN e (g



A. Portilla et al. | Journal of Approximation Theory 127 (2004) 83-107 91

and this last expression goes to 0 as n— oo, since ess iMyesupp w, x—a+f (X) w(x) =0,
as a consequence of the remark to Lemma D. If fe L! (supp w), we also have

||f _fn”Ll(supp w) — ||f _fn“Ll([a,y,,]msupp w)<||fHL1([a7yn]m supp w)?

and this expression goes to 0 as n— oo. Notice that f,(a) = 0; it is easy to modify f,
in a small right neighborhood of a in order to have f,(a) = 4, for fixed 1€R, since
aeST‘ We take 4 = ess limyesupp wx—af(X) if this limit exists; then f, preserves the
continuity of f. This finishes the proof of the lemma.

Lemma 2.3. Let us consider a weight w. Assume that ae S§ and ae(a, 0 )\S. Let us
fix n>0 and f e C(supp w\S) N L® (w) such that

(a) inf£>0 (CSS lim SupxeAg, x—at |f(x)| W(X)) = Oa
(b) esslimye 4, xoa f(x) =f(a), for every £>0 small enough.

Then, there exist be (a,a + 1)\S and a function ge L* (w) n C([a, b)), preserving the
Conlinuity 0ff7 with g :f in supp W\(aa b)7 ||f - g| ‘L“’(w) <n (and Hf - g”L‘(supp w) <n
if f € L' (supp w)).

Remark. A similar result is true if a€ S5 and ae(—c0,a)\S.

Proof. For each natural number 7, let us choose ¢, >0 with lim,_, ., ¢, = 0 and

1
ess lim sup | f(x)| w(x) <

xeds , x—>at

Let us consider now 0<d, <1 with lim,_, ., 4, = 0 and

esssup | f(x)| w(x) <l. (2.1)
xe(a,a+é,) N A, n
We can take J, with the additional property |f(x) — f(a)|<1/n for almost every
xe€(a,a+0,)NA,,.

Since ae (a, 00)\S and (a, o0 )\S is an open set, there exist intervals [y}, y,] < (a,a +
3,)\S, for each n. We assume first that we can choose [y}, y,] =supp w, for every n.
Choosing y, smaller if it is necessary, we can assume that there exist ¢,>0 with
L yu + &n] =supp wn ((a,a + 3,)\S), for every n; this fact and the last statement of

Lemma 2.1 give that fe C([y}, y, + &)

Let us assume that f(y,)>f(a). We consider the convex hull C of the set
{(x,y)eR?/xe[yl,y,] and y=f(x)}. Since feC([y},ya]), we have that dC\({x =
yLy>fONYu{x = yu,y>f(y)}) is the graph of a convex function H,e C([y},y.])
with H,(y!) = f(y}) and H,(y,) = f (yn). Then, as in the proof of Lemma 2.2, we can
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find a function h,e C(la,y,)) with |h, —f(a)|<|f —f(a)| and sgn (h, —f(a)) =
sgn (f —f((l)) if Ay, #f(“) in lnynL hn(yn) :f(yn) and 7, :f(a) in [avyyll]~

If f(vn) <f(a), we can construct £, in a similar way. If f(y,) = f(a), we can take
hy = f (a).

If we cannot find [y!,y,]<suppw, for every n, then there exist intervals
(¥, zn) =(a,a+ 1/n)\supp w, for each n, since (a,a+ 1/n)\suppw is an open set.
Furthermore, we can choose y, esupp w for every n, since aeS;. We define £, =

f(a) in [a, ).
Let us define now the function f, as
hy(x) if xela, y,
new = {0
f(x) if xesupp w\|a, y,]-

Let us remark that f, is continuous in [a, y,] and preserves the continuity of f.

Notice that [/, —f(a)|<[/ —f(a)| and sgn(f,—f(a)) =sgn(f —f(a)) if
fu#f(a), in |a,y,]nsuppw. Recall that |f(x)—f(a)|]<1/n for almost every
x€la,yn) N A4,,. Hence

2
||f 7ﬁl||LX([a,yn]mA 11)\2||f f( )||L“([a,),,]f\A w) HWHLX (lasya) (22)

Notice that ||w|[; () is uniformly bounded for n large enough, since ae S5 .
Inequality (2.1) gives

||f _fn||L7~([a,y,l]mA§”,w) < 2||f _f(a)||L”’~([a,yn]r\A§”,w)

2 .
<20/ ag e,y + 2|f(a)|8n<;+ 2| f (a)len.
This inequality and (2.2) give
2 2
1 = Fllie gy < + 21 @i+ 1]
If f'e L' (supp w), we also have

||f _anLl(suppw ||f fn”L‘ ,y,,msuppu)\ZHf f( )||L1 ([a,yu] ™ supp w)*
This finishes the proof.

Lemma 2.4. Let us consider a weight w, and subsets T* <= ST\S| and T~ =S™\Sy . Let
us take f € L* (w) such that for every aeTT,

(al) inf.>o (esslimsupyc 4o oo [f(X)[ w(x)) =0,

(bl) esslimye 4, yoat f(X) Ef(a) =0, for every £¢>0 small enough, and for every
aeT—,

(a2) inf,>0 (esslimsup,c s (o |/ (x)| w(x)) =0,

(b2) esslimye 4, yoa f(X) if(a) =0, for every ¢>0 small enough.

Then, for each >0, there exists a function ge L™ (w) which preserves the continuity
of f , is continuous to the right at every point of T and is continuous to the left at every
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pOiI’ll Of T77 with ||f_g‘|LL(1t)<n (Cll’ld ||f_gHL1(supp w)gn iffeLl(supp W) and
[Tt T~| =0). Furthermore, we have g=f =0in TTU T .

Remark. If fe L% (w), ess limye 4, x—q+ f(X) = f(a) for every ¢>0 small enough, and
aeSy, then esslimsup,_,. w(x) = co and esslimycy, voq f(x) =0. A similar
result is true for aeSy.

Notice that this result allows to manage simultaneously every point of S U Sy, in
opposition to Lemmas 2.2 and 2.3, which deal only with one point of S} uUS; and
S;US;.

Proof. The heart of the proof is to modify f in a sequential way; in each step we
obtain a smaller function near the points in S7 U S5 .

Fix #>0. Conditions (al) and (bl) give that for any ae T there exist sa 1> 5a 1>0,
such that

|f(x)lw(x)<n/2, for ae. xela,a+d,, ]mA6+ ,
|f(x)|<n/2, for ae.xela,a+d;]nAy

and | f(a+d,,)l<n/2.

In a similar way, for any ae T, there exist ¢, ,9,, >0, such that

|f(x)|w(x)<n/2, for a.e.xela—J,

a1

a]mAg,l,
|f(x)|<n/2, for a.e.xela—9,

and |f(a — 5,,)] <n/2.
It 7= {(User la,a+051]) 0 (User la—05y,a))}nsuppw, and T} =
supp w\T, we define
B max{min{ f(x),n/2},—n/2} if xeT,
91(x) = {f(x) if xeT¢.

anA,

a,l»

From the definition of 3, |, ,,, it follows that g| preserves the continuity of f: Let us
assume that f is continuous to the right at x; if there exists ¢>0 with [x,x +
g)nsupp we T or [x,x + &) nsupp w< T7, the result is clear; if there exists ¢>0 with
(x,x+¢&)nsuppw= T and xe T, then | f(x)|<#n/2 and g; = f in [x,x + &) nsupp w
(ifx=a+ 501, then | f(x)|<n/2; if x = a, then f(x) = 0); otherwise, there exists a
decreasing sequence {x,} converging to x with |f(x,)|<n/2, which implies
|f(x)|<n/2 and, therefore, g;(x) = f(x); on the one hand, if g;(y) =f(y), then
lg1(») — g1(x)] = | f(») — f(x)| and on the other hand, there exists ¢>0 with |g,(y) —
g ()| <|f() = f(x)| for ye[x,x+¢)nsuppw if gi(y)#f(y). These facts give
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l91(¥) — g1 (%)|<|f(») — f(x)] for ye[x,x + &) nsupp w. If f is continuous to the left
at x, the argument is similar.

We also have |g1|<|f | and sgng; = sgnf. These facts imply that

L = aillL=qw)
= max{ sup ||/ =g ||Lm([a.a+5;1],w)a sup ||/ — g1 ||Lw([a5“_a],w>}
aeT™ ’ aeT~ ’
= max{ sup Hf - gl|‘L“fv([a,quéjl]mACJr W) sup ||f — 91 ||L°"([a7§;1,a]ﬁA§7 ,w)}
aeT? e ae T i il

gmax{ sup ||f||L°°([a,a+5:;l]mA°‘ ,w)? sup ||f||L°°([a—5;],u]r\Aj} ,w)}
aeT* ’ 20l aeT~ ' X

a,l
<n/2.

We define g, inductively. Conditions (al) and (bl) give that for any ae T+ there
exist 0<e,,<e,, |, 0<d,,<d,, |, such that

|f(x)|w(x)<n/2", for a.e.x€la,a+ 5;,1]
|f(x)|<n/2",

NAS

)
sll-ll

for a.e. xela,a+d,,]nA,

IIJI’

and | fla+6f,)|<n/2".

Conditions (a2) and (b2) give that for any aeT~ there exist 0<e¢,,<é,, |,
0<6,,<6,, 1, such that

| f(x)|w(x)<n/2", for ae.xela—0
|f(x)|<n/2", for a.e.xela—¢

- c
alnA;_
an ] €’

an a N4,

and | f(a— 5,,)| <n/2".

If Ty={(Uper+ [@a+0,,)0User la—0,,,a)}nsuppw, and T§ =
supp w\T,,, we can define

(x) = max{min{g,-1(x),n/2"},—n/2"} if xeT,,
Inx) = gn-1(x) if xeTy.
From the definition of &'  d.

an Ouns 1t follows that g, preserves the continuity
of ¢g,-1 and, in particular, of f. We also have |g,|<|gn_i1|<|f| and
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sgng, = sgng,_1 = sgnf. These facts imply that
||g" — Y9n-1 | |L“(w)

= max{ sup ||gl’l — Yn-1 ||L’E([aﬁa+6:[”],w)’ Squ ||gn — Y9n—1 ||L*([a—(57 Aa].w)}
aeT~

an?
aeTH

M ]r‘\AIC_Jr Lw)» Sup Hg” — 9n—1 ||L‘X (["*5;n~”]ﬁ‘4§;n’ w)}

_ m{ Sup [19n = gn 1111 (uarar,
aeTH ’ Can aeT~

Sup+ ||gn*1 ||L*([a,a+6

an
aeT

<max{ A w) sup ||gn*1||Lx([a—5’ aln A ,w)}
’ Can aeT~ “an

<n/2".

Notice that /gy — gn—1]|z= (supp w) <1/2"; since T,<T,_;. Recall that, for any
measurable set A =R, L”(A4) denotes the standard L® space in 4 with weight equal
to 1.

Since {|g.(x)|}, is decreasing in n, and sgng, =sgnf, we have that g,(x)
converges to some g(x) at every xesupp w. If m<n, we obtain that

||gn _ gmHL“(w) SV[/Z” + e+ n/szrl <7’/2m’
||gn - gmHL“’v(supp w) <’7/2” + ot 77/2m+1 <’7/2m

Therefore {g, } is a Cauchy sequence in L (w) and L* (supp w); it follows that {g,}
converges to g both in L (w) and L® (supp w).

Then ||/ — g1 w) <>, n/2" =5 and g preserves the continuity of /. If ae T,
given any ¢>0, we can choose n with /2" <g; then |g(x)|<|ga.(x)|<n/2"<e for
every x€la,a+ 9, ]nsupp w. In particular, g(¢) = 0, and hence g is continuous to
the right at a. A similar argument gives that g = 0 and ¢ is continuous to the left at
every point of T~

If f e L' (supp w), then there exists §>0 such that [ |/ |<n for every measurable
set Ecsuppw with |E|<d. If [T*UT"| =0, we can choose d,,,0,, with the

additional property |71 <d. Then ||/ = gl| 11 (supp w) <1/ 11 (7,) <11-

Definition 2.10. A weight w is said to be admissible if ae(a, 0)\S for any
aeS{uST, and ae(—o0,a)\S for any ae Sy U S; .

In order to characterize the functions which can be approximated in L* (w) by
continuous functions, our argument requires that w is admissible. This hypothesis is
very weak; in fact, it is difficult to find a non-admissible weight. For a weight to be
non-admissible there must exist a whole interval contained in S. In particular, any
weight with |S| = 0 (for example, of finite total variation) is admissible. Any weight
which is equal a.e. to a lower semi-continuous function is admissible; in particular, if
there exist pairwise disjoint open intervals {I,} with we C(I,) and [supp w\U, I,| =
0, then w is admissible. Next, we give an example of Miguel Jiménez of a non-
admissible weight; we reproduce it with his kind permission.
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Example. Hereby we construct a bounded weight w on [0, 1], whose support is the
whole interval, with essential inferior limit 0 at every point of the interval of
definition and that is not equal 0 almost everywhere. This example is easily extended
to the real line as a 1-periodic function.

Express the set of rational numbers lying in (0,1) in form of a sequence {r},
k=1,2,... . Define Yy, = (rp — 1/2"F+ p +1/2"41y~(0,1), n=1,2, ... and
Zy, =2y Yin Then {Z,}, is a sequence of open sets in (0, 1), whose lengths
decrease to zero. Define X, := [0, |)\Z,. Then {X,}, is a sequence of closed sets in
[0, 1] whose lengths increase to 1. Set g, as the characteristic function of the set X,
and fu =301 g/

The following properties can be verified without any trouble: { f,}, is an increasing
sequence of positive functions that converges uniformly to a function w on [0, 1]. The
function w is a weight bounded by ", 1/n*. The support of f, is the set X, and since
the lengths of X, increase to 1, the support of w is [0, 1]. For every n and every
xe(0, 1], the essential inferior limit of £, at x is 0. Since w — f,, <1/n* uniformly, the
weight w has this same property at x. Finally neither f;, nor w are reduced to 0 almost
everywhere.

Notice that this concept of admissible weights is different from the one in
[APRR,RARPI,RARP2,R1,R2,R3,RY].

Proposition 2.1. If w is an admissible weight, then the closure of C(R)nL*(w) in
L™ (w) is
= { feL”(w):f is continuous to the right in every point of R,

f is continuous to the left in every point of R,

xXeAS, x—>at

for each aeS™, 1nf (esshmsup |f(x)| w(x )> =0 and,

if a¢ST, ess lim f(x) =f(a), for any ¢>0 small enough,
xed,, x—a*

XeAS, x—a~

for each aeS™, 1nf (esshm sup | f(x)| w(x )) =0 and,

A, x—>a"

if a¢Sy, esshm f(x)=f(a), for any ¢>0 small enough}.

If we L (R), then the closure of C*(R)NL>*(w) in L*(w) is also H. Besides, if

supp w is compact and we L™ (R), then the closure of the polynomials is H as well.
Furthermore, if fe HnL'(suppw), S§ US; US;US; is countable and |S| =0,

then f can be approximated by functions in C(R) with the norm || ||y« + |-

| |L1 (supp w)*
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Remark. Recall that we identify functions which are equal almost everywhere.

Proof. Lemmas 2.1 and C give that H contains C(R)nL* (w). In order to see that
H is contained in C(R)nL*(w), let us fix f € H and ¢>0.

Lemmas 2.2-2.4 are the keys in order to obtain a continuous function which
approximates f; we only need to paste them in a precise way and in an appropriate
order. Another important ingredient in the proof is a covering lemma (Theorem 3.1)
which is proved in Section 3, in order to make this proof clearer.

If we apply Lemma 2.4 with 77 :=S; and 7T~ =S5, we obtain a function
g1 € L* (w) which preserves the continuity of f, is continuous to the right at every
point of Sy and is continuous to the left at every point of Sy, with ||/ —
gill =y <e/3 (and ||/ = g1l 11 (supp w) <€/3 if f e L' (supp w), since |S{ U S7| = |S| =
0). Recall that g;(a) = 0 for every ae S US5.

Since w is admissible, Lemmas 2.2 and 2.3 give that for each aeS; N (S] US;)
there exist b,€(a,a+ 1)\S and a function g,eL* (w)nC([a,b,]), preserving the
continuity of g1, with g, = g1 in supp w\(a,b4), [|g1 — Gall = () <&/3. We define in
this case U, := (a,b,). Without loss of generality, we can assume that there are no
points of S3 in U,, since esslimsup,_, . w(x)<oo implies that w is essentially
bounded in a right neighborhood of a.

In a similar way, for each ae Sy n(S; US;) there exist b,e(a—1,a)\S and a
function g,€ L* (w)nC([b4,a]), preserving the continuity of g¢;, with g, =g, in
supp w\(ba; @), |91 — gall = vy <&/3. We define in this case U, = (bq, a) and we also
have S3n U, = 0.

Let wus define A= (S;n(S/uUSy))u(S;n(S;uUS;)). Since we have
S350 (Uyeq Ua) =0, we deduce that any U, intersects at most another neighborhood
U, (in this case, one of them is a right neighborhood and the another one is a left
neighborhood). Then, without loss of generality, we can assume that {U,},., are
pairwise disjoint (if this was not so, smaller neighborhoods can be taken). This fact
implies that A4 is a countable set, and we can write 4 = | J, @,. Then Lemmas 2.2 and
2.3 guarantee that we can choose g, with ||g; —g,, y<27"¢/3 if
feL'(suppw).

We define the function g as

g2(x) = {

L'(supp w

ga(x) if xeU, for some a€A,
g1(x) in other case.

We have that ||/ — gal|,- ) <2¢/3 (and || = g2l 11 (supp w) <2¢/3 if f € L' (supp w)).

It is clear that g, is continuous in supp w except perhaps at the points of the set
B = ((S§ USHN\S;)u((S; uS;)\S7). Lemmas 2.2 and 2.3 guarantee that for each
ae B there exist 0<r(a),r(a)<1 and a function g, such that, if we define U, =
(a —ri(a),a+ry(a)), then g,e L*(w)nC(U,), g, preserves the continuity of gy,
Jda = g2 in supp w\U,, and ||g» —g£,||L,x(‘,‘,><s/6 (if ae BN R~, we take g, = ¢» in
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(a —ri(a),a), i.e. g» remains unchanged on the left-hand side of the left regular
points; if ae BnR", we take g, =¢> in (a,a+ry(a))). Notice that, as in the
construction of g,, we can assume that there are no points of S3 in (a — ri(a),a +
ra(a)).

Next, let us prove that rj(a) and ry(a) can be chosen such that
20/21<r(a)/r2(a)<21/20: This is obvious if r;(a) = ra(a). Then, without loss of
generality, we can assume that r)(a) <ry(a); if a4+ ri(a)¢S, using Lemmas 2.2 and
2.3, we can obtain another approximation A, of g, in the interval (a —ri(a),a +
ri(a)); if a+ri(a)€S, then a +ri(a)¢ Sy LSy, and there is a point a + r3(a) ¢S as
close as we want to a + r;(a), since w is admissible; then we can obtain another
approximation A, of g, in the interval (@ — ri(a),a + r3(a)).

Since {U,},.p is an open covering of B, Theorem 3.1 in the next section
guarantees that there exists a sequence {a,}<B such that B< |, U,,, each U,
intersects at most two U, ’s, and no U,, is contained in another U,,. Consequently,
the intersection of two intervals does not meet another interval, i.e.
Ua,ﬂ U, m(Uk;&t j ”k) = @

Let us define [0, f,] = U,,. Assume that U, nU,#0, with o;<oy; then
Uy, U, = [0, ;] and [0, B;] Uy, = O for every k#i,j. We define the functions

Bi — X%

B 900+ g0 ()

ga,,ai(x) = gﬂi‘dj(x) =

Notice that g, 4, € C([o, f;]) and satisfies g,,,.,aj(ocj) = 9a,(%), Gara;(B:) = 94,(B;), and

s — 921l o < W (90— 0a()
L ([o,8,],w)
o

=

&
<z.
L= ([o:B:]w)

W%U—mm>

If we define the function g3 as

g2(x) if xesuppw\U, Us,,,
g(x) =< ga(x) if xeU,,, x¢ U2 Uan,
Jara;(x) if xeU, Uy,

then g; is a continuous function in suppw, [|g2 —g3|[ -, <&/3 and |[f -

g3||L‘7v(w) <é.

If f € L' (supp w) and B is countable, we can obtain also ||g, — 93l 11 (supp w) <&/3 (in
the same way that we obtain the L' approximation for g,), and then ||f —
g3||L1(supp w) <&.

It is easy to choose a function ge L* (w) n C(R) with g = g5 in supp w. Let us
define g ==g3 in suppw; then ge C(suppw). Since suppw is a closed set, the
complement of suppw is a countable union of pairwise disjoint open intervals
R\suppw =, (0, B,,). If (o, B,,) is bounded, then a,, f, esupp w, and we define g
in this interval as the function whose graph is the segment joining (o, g3(x,)) with
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(Bus 93(B); if (o, B,) = (—o0,p,) for some n, then fB,esuppw, and we define
g =g3(p,) in this interval; if (o, p,) = (an, 00) for some n, then o,esuppw,
and we define g = g3(o,) in this interval. Tt is clear that this function is continuous
in R.

If supp w is compact and we L* (R), the closure of the polynomials is H as well, as
a consequence of the classical Weierstrass’ Theorem.

If we L. (R), we split R into intervals R =J,., [2n — 1,2n + 2]. For each ¢>0,
there exists g,€ C*([2n — 1,2n+ 2]) (in fact, we can take g, as a polynomial) with
I/ = gnll L (on-1 n42m) <272,

Let us consider a partition of unity {¢,} satisfying: > _,¢,=1 in R,
Pulpnoniy =1, 0<¢, <1 and ¢, e C*((2n — 1,2n + 2)). Notice that g,¢, € C” (R);
hence the function ¢ ==}, g»¢, belongs to C*(R) (since the sum is locally finite)
and satisfies

||f - g”L"(w) = H fz ¢n - Z gnd)n
n n L (w)
< Z I1f —gn)¢n||Lw(w)< Z 272 <.

We can reformulate Proposition 2.1 as follows:
Theorem 2.1. Let w be an admissible weight and
Hy = { feL™(w): fis continuous to the right in every point of R,

f is continuous to the left in every point of R,
for each aeS*, esslim | f(x) — f(a)| w(x) =0,
x—at

for each aeS‘,eisjggn |f(x) = f(a)| w(x) = 0}.

Then:

(a) The closure of C(R)nL®(w) in L (w) is Hy.

(b) If we L (R), then the closure of C* (R)NL* (w) in L* (w) is also H.

(c) If supp w is compact and we L™ (R), then the closure of the polynomials is Hy as
well.

(d) If feHyn L' (supp w), S US5T UST US; is countable and |S| = 0, then [ can be

approximated by functions in C(R) with the norm || - || ) 4 | - || 21 supp w)-

This result improves Theorem 2.1 in [R1], since we remove the hypothesis we L™ .
Furthermore, the set of singular points is much smaller than in [R1], since S <supp w
(see the comment after Definition 2.6). Finally, the hypothesis |S| =0 in [R1] is
replaced by the weaker condition of w to be admissible.
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Proof. We only need to show the equivalence of the following conditions (a) and (b):

(a) for each ae ST,

(a.1) inf,~¢ (esslim SUDPye 4e, xat |f(x)] w(x)) =0,

(@.2) if a¢ Sy, esslimye 4, x—ar f(x) = f(a), for e>0 small enough,
(b) for each aeS™, esslimycqupp w, xoa+ | f(X) — f(a)] w(x) = 0.

(It is direct that (b) is equivalent to esslim,_ .+ | f(x) — f(a)] w(x) = 0 for each
ae ST, since w(x) =0 for a.e. x¢suppw.)

The equivalence of (a) and (b) when aeS™ is similar.

It is clear that (b) implies (a). Hypothesis (a.1) gives that for each >0, there exist
&,0>0 with || /]|~ (q.a46)~acy <n/3 and | f(a)le<n/3. By hypothesis (a.2) we can
choose ¢ with the additional condition ||/ —f(a)l[1=(g+)na,w) <n/3- These
inequalities imply

L =@l (aarorm < N e (o) naemy + 1S (@)]e
+ ||f 7f(a)||L'f([a,a+5]ﬁAB,w) <.

Now we deal with the approximation by polynomials and smooth functions.

Definition 2.11. Given a weight w with compact support, a polynomial pe L* (w) is
said to be a minimal polynomial for w if every polynomial in L® (w) is a multiple of p.
A minimal polynomial for w is said to be the minimal polynomial for w (and we
denote it by p,,) if it is 0 or it is monic.

It is clear that there always exists a minimal polynomial for w (although it can be
0): it is sufficient to consider a polynomial in L* (w) of minimal degree. Minimal
polynomials for w are unique except for a constant factor; this fact allows to define

Dw-
Let us remark that p,, = 0 if and only if the unique polynomial in L® (w) is 0.

Theorem 2.2. Let us consider a weight w with compact support. If p,, =0, then the
closure of the space of polynomials in L™ (w) is {0}. If p, is not identically 0, the
closure of the space of polynomials in L™ (w) is the set of functions f such that f /p,, is
in the closure of the space of polynomials in L™ (|p,,|w).

Remark. The weight |p,,|w is bounded (since p,, € L* (w)) and has compact support.
Then we know which is the closure of the space of polynomials in L* (|p,|w) by
Theorem 2.1 (notice that |p,|w is admissible if w is admissible).

Proof. The first statement is clear, since p,, = 0 if and only if the unique polynomial
in L™ (w) is 0.
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We prove now the second statement. First, let us assume that f'/p,, is in the closure
of the space of polynomials in L* (|p,,|w). Let us choose a sequence of polynomials
{an} with [|f/pw — qn“L%(\p,t.pv) <1/n. We have that [[f —pugu||,- (w) = I1f/pw—
aqnl Lo () <1 /n. Consequently, f belongs to the closure of the space of polynomials
in L™ (w).

Let us assume now that f/p,, is not in the closure of the space of polynomials in
L*(|pw|w). Then there exists a constant ¢>0 with || f/py — pl[ () = ¢ for every

polynomial p and, consequently, ||/ — pupl|p«( = |[f/pw — P
polynomial p. Since every polynomial ge L (w) can be written as ¢ = p,,p for some
polynomial p, we have that f cannot be approximated by polynomials in L* (w).

L= (jpyw) = € for every

Definition 2.12. Given a weight w, we define the set 7 := {aeR: esslimsup,._,,
w(x) = oo} csupp w.

Let us remark that 7 is a closed set.
Definition 2.13. Given a weight w, a function f,,e C*(R)n L (w) is said to be a

minimal function for w if every function f'e C*(R)nL*(w) can be written as f =
fw g, with ge C* (R).

It is clear that minimal functions for w are unique except for a multiplication by a
function in C* (R) without zeroes. It is also clear that a minimal function f,, verifies
Sw(x) =0if and only if xeT.

Notice that R\7 is an open nonvoid set, since the case w = oo is excluded; then
there exists some function in C* (R) n L® (w). Consequently, it is not possible that f;,
be identically zero.

The same proof of Theorem 2.2, using a minimal function instead of the minimal
polynomial, gives the following result.

Theorem 2.3. Let us consider a weight w such that there exists a minimal function f,,
Jfor w. Then the closure of C* (R) in L* (w) is the set of functions f such that f /f,, is in
the closure of C* (R) in L™ (| f,,|w).

Remark. The weight | f,,|w is locally bounded (since f;, € L. (w)). Then we know by
Theorem 2.1, which is the closure of C*(R) in L* (] f,,|w), if | fi,|w is admissible.

In order to use Theorem 2.3 we need a minimal function for w. Let us face the
problem of constructing such a minimal function.

Definition 2.14. Given a weight w, a function f,, is said to be a local minimal function
Jor wat aeT if f,,eC*((a—¢,a+¢e))nL”((a—e¢,a+¢),w) for some ¢>0, and
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every function feC®((a —¢,a+¢))nL*((a—¢,a+¢),w) can be written as f =
Sfwg, with ge C* ((a —¢,a+¢)).

It is clear that f,, is a local minimal function for w in « if and only if there exists
¢>0 such that f, is a minimal function for wy where yp denotes the
characteristic function of the set B.

a—e,a+¢e))

Proposition 2.2. Let us consider a weight w. If T is discrete and for every point ae T
there exists a local minimal function f,, , for w in a, then there exists a minimal function
Sfw for w with f,, = f,, , in a neighborhood of a, for every aeT.

Proof. Since T is closed and discrete, there is no accumulation point of T’; then
T = {ay},.,, with A equal to Z, Z*, or a finite set, and {a,},., is a monotonous
sequence. Let us consider &) >0, the constant appearing in the definition of local
minimal function for f,,,. There exists 0<e, <&l such that {(a, — &x, @, + )}, 4 are
pairwise disjoint. Let us consider ¢, € C ((a, — &n, ay + ¢,)) With 0< ¢, <1 and ¢, =
lin (a, — &,/2,a, + €,/2); we define also p =1-5",_&,.

We show now that f,, = ¢ + >, _ 4 ¢, fiq, is @ minimal function for w. Notice first
that fi, =fua, 0 (ay—&,/2,a, +€,/2); then, f,eC*(R)NLZ.(w), since
w, € LS (R\U,c s (an — &0/2,an + €,/2)).

Let us consider f'e C*(R)nL*(w). We only need to show that f/f,, =f/(¢ +
> wea®ufiva,) € C*(R). This function is smooth at every point of R\T, since it is the
quotient of two smooth functions with non-vanishing denominator. Notice that
S/ =1/ wa, i (ay — /2, a, + €,/2); consequently, f/f,, is smooth in a,, since f,, 4,
is a local minimal function for w in a,.

Definition 2.15. Given a weight w, we say that aeT has order neZ" if
esslimx_,alxesuppww(x)|x—a|"_l:oo and esslim sup,_,, w(x)|x —a|"<o0. We

say that ae T has finite order if a has order n for some neZ™.

Proposition 2.3. Let us consider a weight w and ae T with order n. Then (x — a)" is a
local minimal function for w in a.

Proof. First, notice that the condition ess lim sup,_, , w(x)|x — a|” < oo implies that
there exists ¢>0 with (x —a)"e L™ ((a — ¢,a + &), w).

We only need to show that for every function feC*((a —¢,a+¢))nL*((a—
g,a+¢&),w) we have that f(x)/(x —a)"e C* ((a — &,a + ¢)).

Since esslimsup, _,, | f(x)|w(x)< oo and esslimy_ 4 vesupp w W(X)|x — a" ! = oo,
then we have that ess limy_, 4 yvesupp w/f (X)/(X — a)" ' =0.
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As feC”((a—¢,a+¢)), we have that for every m >0 there exists

o S0 = S [P @)(x — a) /Kt 1D a)
xX—a (x_a)m (m+ 1)'

Then f(a)=f"(a)= - =f""Y(a) =0, and we have that f(x)/(x —a)"eC*®
((a—¢a+¢). O

Notice that Theorem 2.3 (respectively Theorem 2.2) with Propositions 2.2
and 2.3 give the closure of smooth functions (respectively polynomials) in
L™ (w), if every point of T has finite order (in this case we have that T is
discrete).

Our results give that for many unbounded weights the closure of C* (R) in L* (w)
is not equal to the closure of C(R) in L™ (w).

Proposition 2.4. Let us consider a weight w such that we L ([a — &,a) U (a,a + &)
and 1/w is comparable to the modulus of a local minimal function for w in a. Then the

closure of C*(R) in L™ (w) is not equal to the closure of C(R) in L™ (w).

Remark. If w is comparable to |x —a|™" in a neighborhood of a, for some neZ*,
then 1/w is comparable to the modulus of a local minimal function for w in a (we can
take (x — )" as this minimal function, by Proposition 2.3).

Proof. Without loss of generality, we can assume that 1/w = |f,| in (a —¢,a + ¢),
where f,, is a local minimal function for w in a, and that f,,€ C* ([a — ¢,a + ¢]). Let us
choose a function ¢ C¥ ((a —¢,a+¢)) with ¢ =1 in (a —¢/2,a + ¢/2).

We see now that the function

£(x) = ful ) x)sin——

is in the closure of C(R) in L™ (w) and it is not in the closure of C*(R) in L® (w).
Since supp f < (a — ¢,a + ¢), we can assume that w = 0 in R\[a¢ — ¢, a + ¢]. Hence the
weight w has no singular points, since 1/w = |f,,| in (¢ — e,;a+¢) and f,,e C* ([a —
&,a+¢|).

It is clear that /" is in the closure of C(R) in L™ (w), since f € C(R)nL® (w): recall
that 7' = {a}, since we L? ([a — ¢,a) U (a,a + ¢]).

The function f/f,, is not in the closure of C*(R) in L* (1), since it is not
continuous at @. Then Theorem 2.3 gives that /" is not in the closure of C*(R) in
L*(w). O
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3. The covering lemmas

The following result is a Besicovitch—Vitali-type lemma; this kind of covering
lemma plays an important role in harmonic analysis (see e.g. [G]). The proof of
Lemma 3.1 follows the classical ideas in the proof of this kind of lemma (see e.g. [G,
Chapter 3.2]). However, our situation differs from the standard one: we cover a
possibly unbounded set B by intervals which are not centered at points of B; this is
the reason why we include the details of the proof. Lemma 3.1 is the main tool in the
proof of Theorem 3.1 below.

Lemma 3.1. Let B be a subset of R and M a positive number. For each ae B we are
given an open interval U, = (a —r\(a),a+ry(a)), with 0<ri(a),r(a)<M and
20/21<r1(a)/r2(a)<21/20. Then, one can choose a sequence {a,}<=B such that
Bc \J, U,,, and {a,} can be distributed into 42 sequences {ay, },{an,}, ..., {an, } such
that for each fixed j we have that {Uan/} are pairwise disjoint.

Remark. The proof of the lemma allows to obtain a constant greater than 21/20, but
in the proof of Proposition 2.1 we only need a constant greater than 1.

Proof. Let us assume that the lemma is true for bounded sets B, with 14 sequences
(instead of 42). If B is not bounded, we can consider the bounded sets Bj :=
Bn[2kM,(2k +2)M], for any integer k. Applying the lemma to each By, 14
sequences are obtained for each k; since 0 <r;(a),r2(a) <M, an interval correspond-
ing to k can only intersect intervals corresponding to k — 1, k and k + 1. Hence, the
lemma is true with 3 - 14 = 42 sequences. Therefore, without loss of generality, we
can assume that B is bounded.

For each aeB, let us define r(a):=min{ri(a),r2(a)}. We choose the
sequence {a,}<B in the following way: let us consider a; with
r(ar)>3sup {r(a) : aeB}; if we have chosen ai, ..., a,, let us consider a,;; with
F(aps1)>3sup {r(a): ae B\U,, v --- 0 U, }.

In this way we obtain a sequence {a,}<B. If this sequence is finite, then
Bc |, U,,. If this sequence is infinite, then lim,_, ,,7(a,) = 0. Seeking a contra-
diction, suppose that r(a,) > o> 0 for every n. We define m := 21/20. Notice that the
intervals in the sequence {(a, —ri(a,)/(3m),a, +r2(a,)/(3m))}, are pairwise
disjoint: if xeU, NnU,, then xe(a, —r(a,)/3,an + r(ay)/3) N (ar — r(ax)/3, ax +
r(ax)/3), since ri(a,)/m<r(a,). Without loss of generality, we can assume that
a, <ay; therefore, x —a,<r(a,)/3 and ax — x<r(ax)/3, and we deduce that a; —
an<r(ay)/3 + r(ar)/3; if we are in the case k<n, we also have r(ay)>3r(a,)/4 and
r(ax) <ax — ayn, since a,¢ U, , and we conclude that r(ay)<ar —a,<r(a,)/3+
r(ax)/3; hence, r(ay)<r(a,)/2, which is a contradiction. The case k>n is similar.
Therefore, lim,_, ,, 7(a,) = 0. If a = a, for some n, we have directly ae |J, U,,. If
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aeB\{a,},, then there exists n with r(a,.)<3r(a), and this implies that
acU,v---uU,,. Hence, Bc |, U,,.

In order to prove the second conclusion of the lemma, let us fix U,, and ask
ourselves how many U, ’s, with k <n, intersect U,,. Such U, ’s can be classified into
two types: those verifying |a, — ax| <3mr(a,) (type 1), and those verifying the reverse
inequality (type 2). Let us recall that r(ayx) > 3r(a,)/4 for every k<n.

We claim that the following is true.

Claim. There is at most one k<n with U, U, #0, |a, — a| >%mr(an) and ai <ay,.
The same is true if we change ai. <a, by ai > a,.

Assuming this claim to be true for the moment, we complete the proof. We define
now Vi = (ar — ir(an), ax +3r(ay)) if k is of type 1, and Vi = (aj — ir(ay), a; +
ir(an)) if k is of type 2, where a; is the point between a; and aj, at distance 3mr(a,) of
ay.

We have that the sets V}’s are pairwise disjoint: if k; and k; are both of type 1, this
is a consequence of |ay, — a,|=min{r(ay,),r(ar,)} >3r(ay); if ki and k, are both of
type 2, this is a direct consequence of the claim; if k; is of type 1 and k; is of type 2,
the claim gives that |a, — aj | >3mr(a,)>3r(a,), and this implies that Ve, and Vi,
are disjoint.

Now, notice that every V} is contained in the interval centered in @, with radius
(3m+ %)r(an). Since the radius of every Vy is %r(an), there is at most 12m + 1 such k’s;
in fact, there is at most 13 k’s with U, " U,, #0 and k<n, since 12m + 1< 14.

Hence, {a,} can be distributed into 14 sequences {ay, },{an,}, ..., {an,} such that
for each fixed j, {Ua,,j },, are pairwise disjoint.

Proof of Claim. Seeking a contradiction, suppose that there are kj,k,<n with
Uy, O Ua, #0,  an — ay, >3mr(a,) (for i=1,2) and @, <ay, <a, Since a,—
A, >%mr(an) by hypothesis, ax, ¢ U,,; if k; <k, we also have that ay, ¢ Uq, because
of the choice of @, and, consequently, Uy, N U,, = 0, which is a contradiction. If
ky >k, we have that r(ay,) >3r(ax,) >3 (as); if we denote by x the distance between

a, and U, , we also have mr(ay,) + x> a, — a, >3mr(ay), ie.
Hr(ar,) + x> r(ay). (3.1)
In order to find a contradiction it is sufficient to see that

Ir(ag,) + x =35 (an), (3.2)
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since this inequality implies successively (notice that 3 =2 — 3m)

2r(ag,) + x>%mr(ak2) + mr(ay),
2r(ag,) + x>mr(ay,) + mr(ay,),
ay — ag, >mr(ag, ) + mr(ay),

Uy, U, = 0.

Notice that r(ag,) > r(ay) is equivalent to 3r(ax,) + 37r(an) >35r(ay); if x=30r(an),
this implies (3.2).

If x<3lr(ay), (3.1) guarantees 3ir(ax,) + 30r(an) >Hr(ay).

This inequality implies r(ay,)>3tr(a,) >2r(a,), and this guarantees (3.2). O

The following theorem is an improvement of this lemma.

Theorem 3.1. Let B be a subset of R and M a positive number. For each a€ B we are
given an open interval U, = (a —r\(a),a+r:(a)), with 0<ri(a),r(a)<M and
20/21<r1(a)/r2(a)<21/20. Then, one can choose a sequence {a,}<B such that
Bc \J, U,,, each U, intersects at most two U,’s, and no U, is contained in
another U,,,.

Proof. Let us denote by {«,}, any sequence of elements of B with the properties in
the statement of Lemma 3.1. Since {o,}, is countable, we can assume that no U,, is
contained in another U, ; if this is not so, we proceed to remove from the sequence
(in a sequential way) those elements whose neighborhood is contained in another

o

We consider the points in {a,}, such that U,, intersects U,,. Notice that there is at
most 83 =1 +2(42 — 1) points in {a,}, (including o) with such a property, because
no U, is contained in another U,, and Lemma 3.1. Let us denote by {o,, ..., %, }
these points (r<83). Then we can choose at most three n;,, n;,, n;, = {ny, ..., n,}, with
Uy, 000U, = U%] v U%2 U Uz% , and such that for any permutation {u, v, w} of
{1,2,3}, Us, is not contained in Uy, O U, - We denote by {a!} the subsequence
obtained by deleting from {a,} the elements {0, ..., o, F\{ot, Vot Vo, }. It is
clear that J, U,, =J, U, and that the points in U,, are at most in two intervals of
{U.} (even though «; does not belong to {!} any more).

Let us denote by k the lowest integer greater than 1 with oy € {e! }. The last process
can be repeated, with oy instead of «;, and {o!} instead of {a,}, obtaining a
subsequence {«;} such that | J, U,, = U, U, and the points in U,, U U, are at most
in two intervals of {U,}.
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Iterating this process, we obtain subsequences {ol}>{a2} > {2} >---. Let us
denote by {a,} the intersection of such subsequences. We have that |, U,, =
U, U,, and the points in this set are at most in two intervals of {U,, }. Besides, no
U,, is contained in another U,,. Hence, each U,, intersects at most two U, ’s.

'm
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